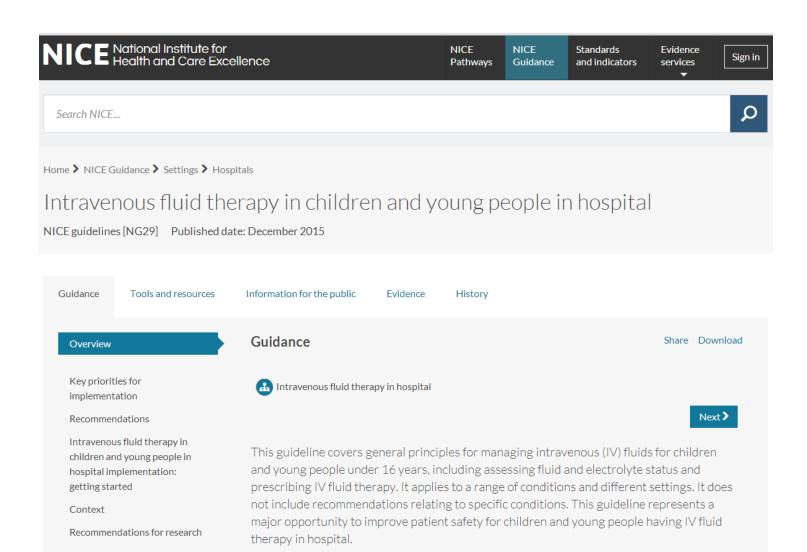
Central Manchester and Manchester **NHS** Children's University Hospitals

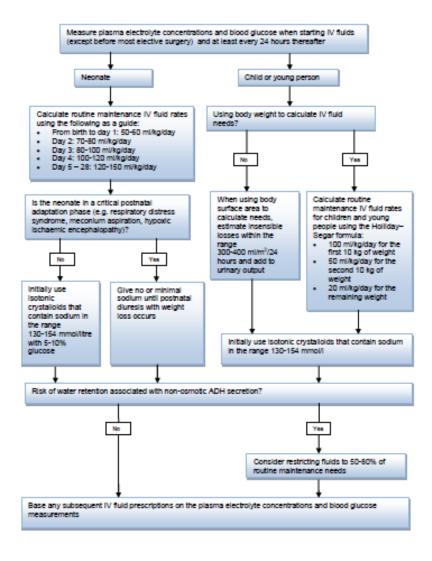
NWTS

North West & North Wales Paediatric Transport Service

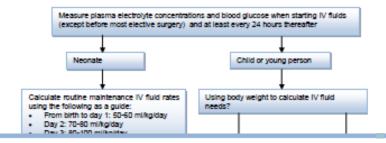
27 September 2016

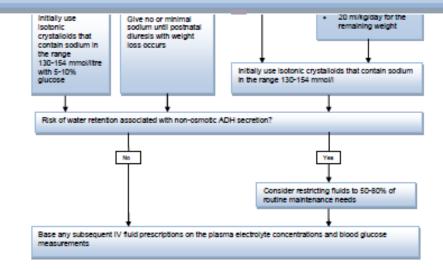

An Update on IV Fluids for Children

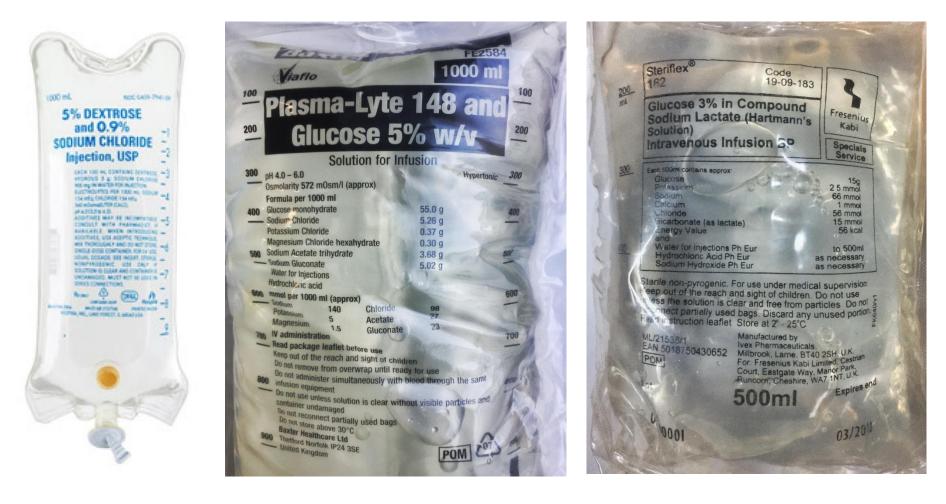
Stephen Playfor Consultant in PICU


An update on IV fluids for children

- NICE guidance; December 2015
- Choice of isotonic crystalloids;
 - -0.9% sodium chloride solution
 - Balanced electrolyte solution
 - Plasma-Lyte 148
 - Hartmann's solution
- Review of latest research


NICE guidance December 2015


Routine Maintenance


Routine Maintenance

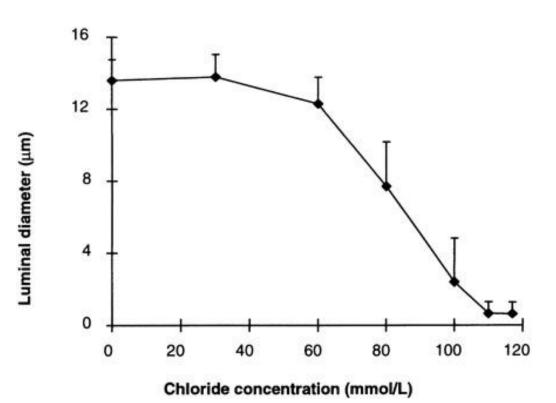
Initially use isotonic crystalloids that contain sodium in the range 130-154 mmol/l

Isotonic fluid with dextrose...

Plasma-Lyte 148 Composition

	Memm								Osmolarity
	Cations			Anions					
	Na+	K•	Ca++	Mg++	Cŀ	Acetate	Lactate	Gluconate	(mosmol/L)
NaCl 0.9% ²	154	-	-	-	154	-	-	-	309
Hartmann's ^a	131	5.0	2.0	-	111	-	29	-	278
Plasma-Lyte 148 (pH 7.4) ^s	140	5.0	•	1.5	98	21	-	23	295
	—		4			1			
Plasma ⁵	136 - 145	3.5 - 5.0	2.2 - 2.6	0.8 - 1.2	98 - 106	Bi	carbonate 2	1 - 30	29 0- 303º
Kratz A et al. ⁵	No Calcium Compatibility with blood cells								siological nolarity
Physiological levels of sodium and chloride						ing capacity provide tate and gluconate	d		

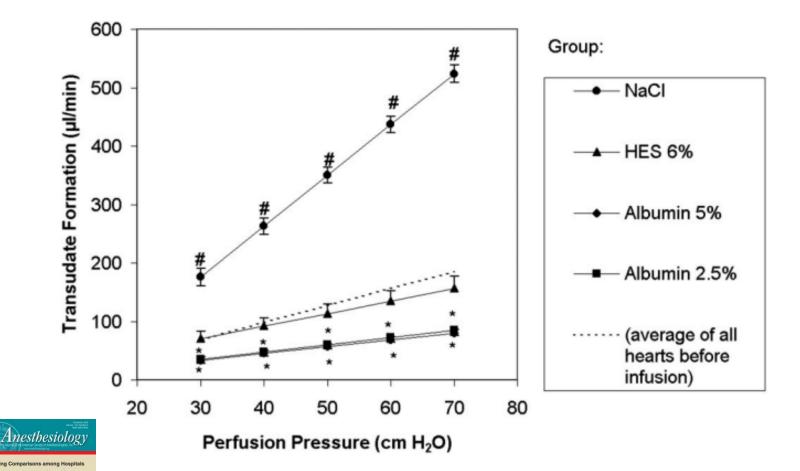
'Normal' saline


- Strongly acidic
 - pH; 4.6-5.5
 - CO_2 in the solution $\rightarrow 0.1\%$ carbonic acid
 - PVC packaging
 - Diethylhexyl phthalate
 - Gamma irradiation \rightarrow free radicals & HCI
 - Autoclaving \rightarrow oxidation; formic and acetic acid
 - Sodium ion is an intrinsic Lewis acid

(Some) Negative effects of hyperchloraemic acidosis

- Reduced renal perfusion
- Pro-inflammatory effects
 - Increased cytokines
 - Endothelial injury
 - Acute kidney injury
- Electrolyte derangement
- Clotting derangement
- Increased blood transfusion requirement
- Death

Chloride-dependent vasoconstriction


 Critical range of vasoconstriction (50-100%) lies in the physiological range of 90-110 mmol/L

Hansen PB et al, Hypertension 1998;32:1066-1070

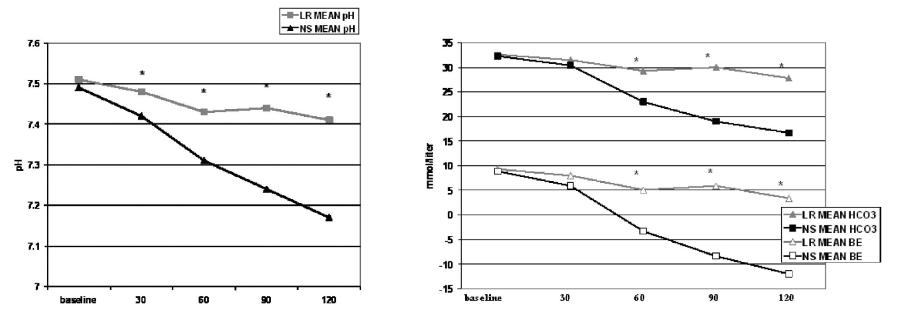
Transudate formation

Anesthesiology 2006; 104:1223-31

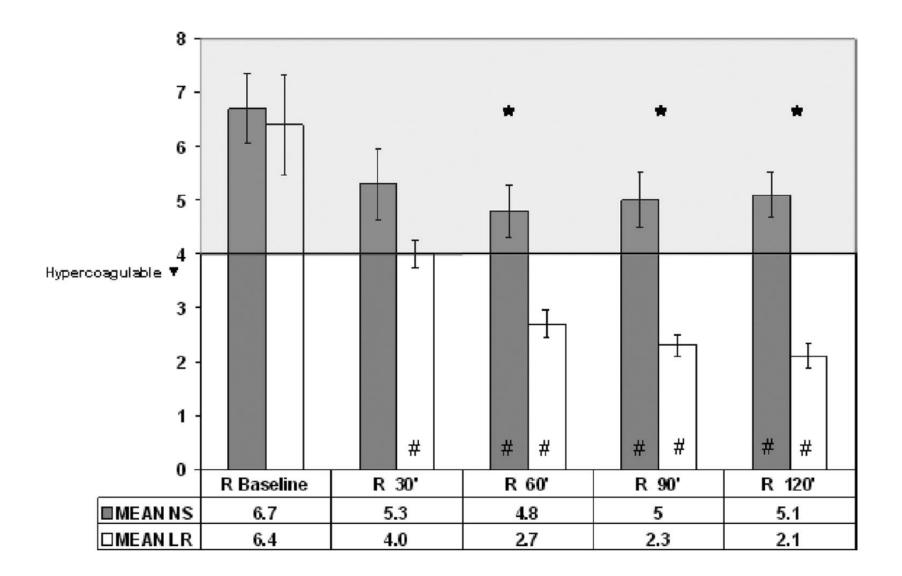
© 2006 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc.

Contrasting Effects of Colloid and Crystalloid Resuscitation Fluids on Cardiac Vascular Permeability

Matthias Jacob, M.D.,* Dirk Bruegger, M.D.,* Markus Rehm, M.D.,† Ulrich Welsch, M.D., Ph.D.,‡ Peter Conzen, M.D.,§ Bernhard F. Becker, M.D., Ph.D.∥

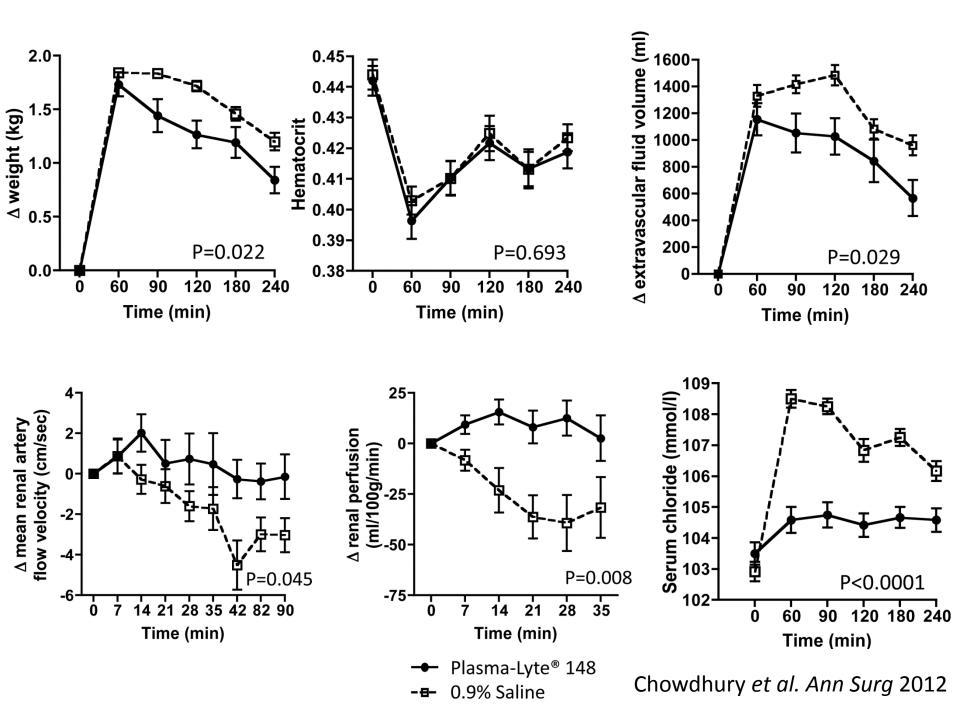

The Journal of **TRAUMA**[®] Injury, Infection, and Critical Care

Resuscitation With Normal Saline (NS) vs. Lactated Ringers (LR) Modulates Hypercoagulability and Leads to Increased Blood Loss in an Uncontrolled Hemorrhagic Shock Swine Model


Laszlo N. Kiraly, MD, Jerome A. Differding, MS, T. Miko Enomoto, MD, Rebecca S. Sawai, MD, Patrick J. Muller, MS, Brian Diggs, PhD, Brandon H. Tieu, MD, Michael S. Englehart, MD, Samantha Underwood, MS, Tracy T. Wiesberg, MD, and Martin A. Schreiber, MD

J Trauma. 2006;61:57-65.

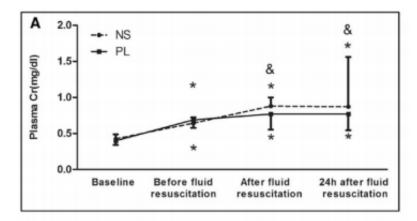
TEG R values following injury

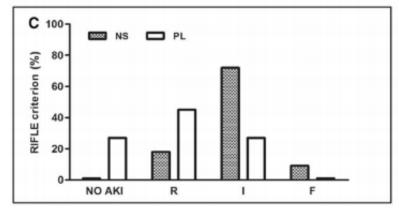


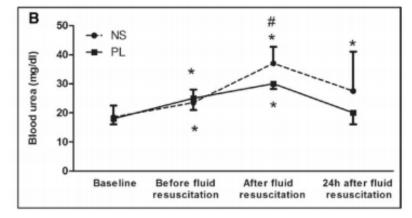
A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers

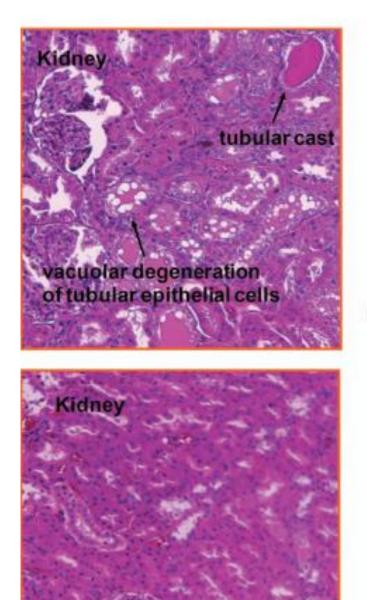
Chowdhury AH et al, Ann Surg 2012;256:18-24

- Twelve healthy adult male subjects received 2-litre intravenous infusions over 1 h of 0.9% saline or Plasma-Lyte 148 in a randomised, double-blind manner
- Crossover studies were performed 7-10 days apart
 - MRI scanning to measure renal artery blood flow velocity
 - MRI scanning to measure renal cortical perfusion
 - Blood was sampled
 - Weight recorded hourly

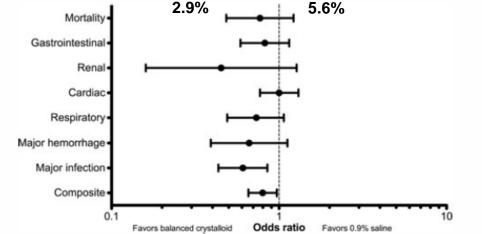


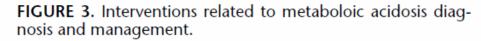

Increase in sepsis-induced AKI


- 60 adult male, septic rats
- Saline-treated animals showed significantly higher levels of serum chloride, lactate, urea and cystatin C after fluid resuscitation (p<0.05)
- Saline resuscitation significantly decreased pH and base excess; and increased AKI severity (AKI-I/F, 82% Vs 27%), compared to Plasma-Lyte resuscitation (p<0.01)
- 24 hour survival favoured Plasma-Lyte resuscitation (76.6% Vs 53.3%; p = 0.03)

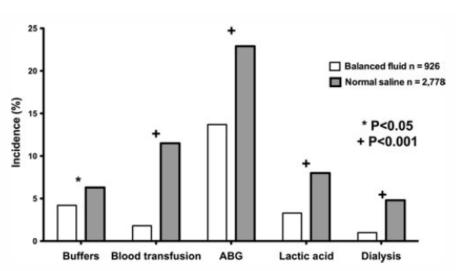

Effects of fluid resuscitation with 0.9% saline versus a balanced electrolyte solution on acute kidney injury in a rat model of sepsis

Zhou F, Peng Z-Y, Bishop JV, et al. Crit Care Med 2014;42:e270–e278




Major Complications, Mortality, and Resource Utilization After Open Abdominal Surgery: 0.9% Saline Compared to Plasma-Lyte

Andrew Shaw et al, Duke University



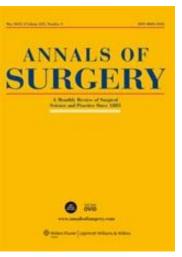

Complications

FIGURE 2. Odds ratios and 95% confidence intervals for prespecified clinical outcomes.

Annals of Surgery 2012:255;821-829

Interventions

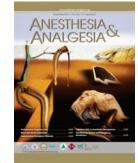
Nor'azim Mohd Yunos, MD Rinaldo Bellomo, MD, FCICM Colin Hegarty, BSc David Story, MD Lisa Ho, MClinPharm Michael Bailey, PhD

Association Between a Chloride-Liberal vs Chloride-Restrictive Intravenous Fluid Administration Strategy and Kidney Injury in Critically III Adults

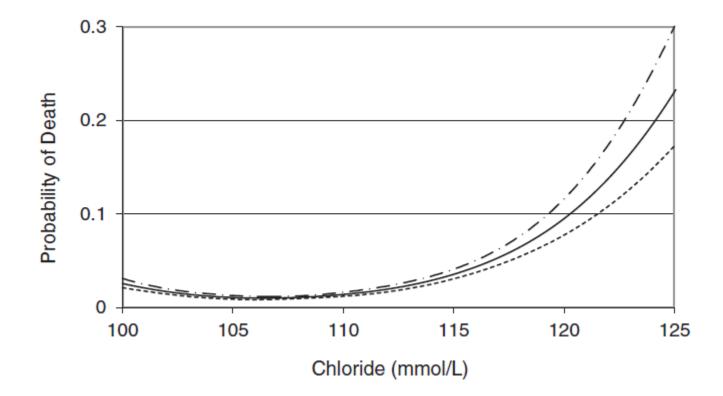
JAMA. 2012;308(15):1566-1572

Interventions During the control period, patients received standard intravenous fluids. After a 6-month phase-out period (August 18, 2008, to February 17, 2009), any use of chloride-rich intravenous fluids (0.9% saline, 4% succinylated gelatin solution, or 4% albumin solution) was restricted to attending specialist approval only during the intervention period; patients instead received a lactated solution (Hartmann solution), a balanced solution (Plasma-Lyte 148), and chloride-poor 20% albumin.

Conclusion The implementation of a chloride-restrictive strategy in a tertiary ICU was associated with a significant decrease in the incidence of AKI and use of RRT.


Table 3. Incidence of Acute Kidney Injury Stratified by Risk, Injury, Failure, Loss, and End-Stage (RIFLE) Serum Creatinine Criteria

	No. (%) [95%	CI] of Patients ^a	
	Control Period (n = 760)	Intervention Period (n = 773)	<i>P</i> Value
RIFLE class			
Risk	71 (9.0) [7.2-11.0]	57 (7.4) [5.5-9.0]	.16
Injury	48 (6.3) [4.5-8.1]	23 (3.0) [1.8-4.2]	.002
Failure	57 (7.5) [5.6-9.0]	42 (5.4) [3.8-7.1]	.10
Injury and failure	105 (14) [11-16]	65 (8.4) [6.4-10.0]	<.001

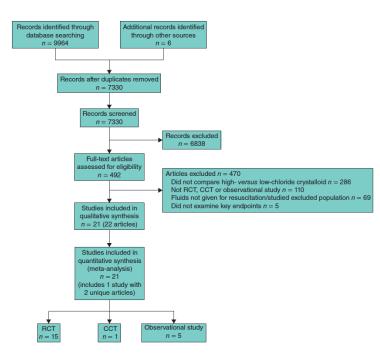

Hyperchloremia After Noncardiac Surgery Is Independently Associated with Increased Morbidity and Mortality: A Propensity-Matched Cohort Study

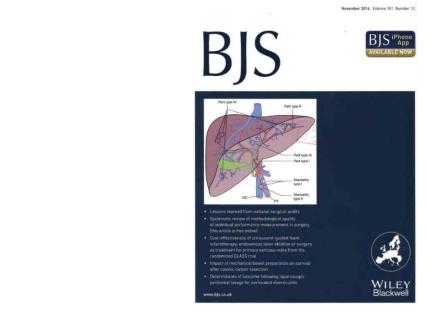
Stuart A. McCluskey, PhD, MD,* Keyvan Karkouti, MSc, MD,*† Duminda Wijeysundera, PhD, MD,* Leonid Minkovich, PhD, MD,* Gordon Tait, PhD,* and W. Scott Beattie, PhD, MD*

- Retrospective cohort trial
- 22,851 adults with normal pre-op renal function and chloride levels
- 22% incidence of post-op hyperchloraemia
- Propensity-matched with those who maintained normal chloride levels

Probability of Death

Increased mortality at 30 days; 3% Vs 1.9% (Odds ratio 1.58, 95%CI: 1.25-1.98)

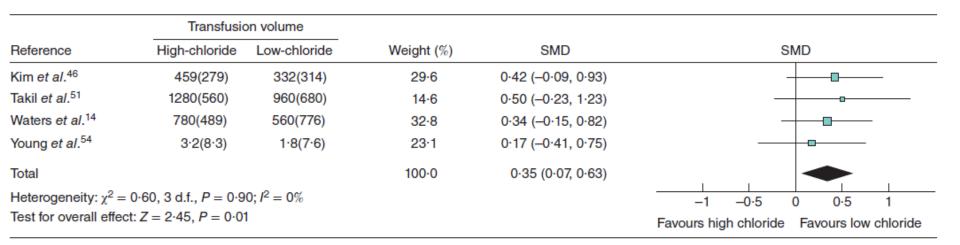

Meta-analysis of high- *versus* low-chloride content in perioperative and critical care fluid resuscitation


M. L. Krajewski¹, K. Raghunathan^{1,2}, S. M. Paluszkiewicz³, C. R. Schermer⁴ and A. D. Shaw⁵

¹Department of Anesthesiology, Duke University Medical Center, and ²Anesthesiology Service, Durham VA Medical Center, Durham, North Carolina, ³Boston Strategic Partners, Boston, Massachusetts, ⁴Baxter Healthcare Corporation, Deerfield, Illinois, and ⁵Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA

Correspondence to: Professor A. D. Shaw, Division of Cardiothoracic Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232–8274, USA (e-mail: andrew.shaw@vanderbilt.edu)

30 October 2014 in Wiley Online Library (www.bjs.co.uk). DOI: 10.1002/bjs.9651



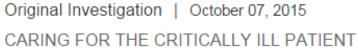
					Total study		
Reference	Your	Design	Country	Study population	population	Interventions compared	Key endcointe
Borton of al. ⁴¹	2000			Adults with thermal burns	40	Electronated 0.9% saline rectag	Motality acute total injury.
		ranaganana				Ringerfe lacibile	CULOS, mechanical worlddon tme, hyperthionemia/twitebolc addebs, urine cutout
Cho et al. ⁴⁰	2007	RCT	Kona	Adults with rhebdomyclysis	26	0.9% salite withit Ringer's lactate	Serum chiloride
Chus et al. ⁴⁵	2012	Retrapective	Actols	Adults with servers DKA	23	0-9% salite wouz Planta-Lyte [®] 148	ICU LOS, urine output
Circa et al. ⁶⁶	2013	Obervolonei	Para	Adults with seven dehydration	۵	0.9% saine weste Ringe's laciste	Serum cradinine, serum chiloride
Hadimicglu of al. ¹⁰	2006	RCT	Turkay	Adults undergoing kidney transplantation	907	0-9% saline secura Pasma-Lyte [®] and Ringer's lactate	Acute renal injury, serum creatinine, serum chioride, urine output
Haaman of al.42	2012	RCT	Turkay	Adults with moderate or severe dehydration	907	0-915 saline versus Plasma-Lyte [®] and Ringer's lacteds	Serum chiloride
Rhajavi of al.48	2006	RCT	inan	Adults undergoing kidney transplantation	8	0.9% salne wexz Ringe's lactate	Serum credinite, urine output
Kim et al. ⁴⁰	2013	RCT	Kona	Adults undergoing kidney transpientation	60	0-9% saline sector Plasma-Lyla [®] A	chiotide, unite output,
Matajan atal. ⁴⁷	2012	RCT	India	Children with several delycholikm	22	04% wire wour Regin lacks	berefasion volume Mostelity, hospitel LOS, serum chiotole
Mahler et al. ⁴⁸	2011	201	UBA	Adults with DKA	6	0-9% salite versus Plasma-Lyta [®] A	
Modiantel ⁴⁸	2012	RCT	Saudi Arabia	Adults undergoing kidney transplantation	74	0.9% salne vetuz Ringe's laciste	Serum chioride, serum creatinine
O'Malay of al. ¹⁰	2006	RCT	USA	Adults undergoing meal transplantation	£1	04% seine wouz Pinger's lectele	Acuto renal injury, hospital LLOS, hyperchicosomia/ mobibolic acidoste, serum creatinina, serum chiorida, urino cutput
Scheingraber all all ¹⁰	1999	RCT	Germany	Adults undergoing electres abdominal symecological surgery	24	0-9% saine wouz Ringe's laciate	Urine output
Shaw of al. ²⁷	2012	Retrapective	USA.	Adult surgical patients	2794)	0.9% salite sonza Plasma-Lyla [®] 148 or Plasma-Lyla [®] A	Mortality, acute kidney injury, hospital LCIS, mechanical worklation time
Taki of al ⁸¹	9009	RCT	Turkay	Adult spinal surgery patients	30	0-9% salno sozz Ringer's laciale	Hospital LOS, ICULOS, serum chioride, unite output, transfusion volume
Van Zyl et al. ⁶⁰	2012	RCT	South Africa	Adults with DKA	64	0.9% salite vetsat Ringer's lactate	Hospitel LOS, serum creditine, serum chloride
Waters of at ¹⁴	900n	RCT	USA	Adult patients undergoing sortic reconstructive surgery	95	04K salim vetuzi Fingar's laciala	Mortality, acute meral injury, hospital LOS, CU LOS, mechanical vanilation time, aroum creatinine, aroum chilotide, unine cutput, therefacion volume
Wootal ¹⁰	2011	RCT	USA	Adults with acute percrudits	۵	0-9% salite wouz Ringe's lactate	Acuto ronal injury, hospital LCIS
Young et al. ¹⁶⁴	2014	RCT	USA	Adults with insumatic injury	6	04% salim sonut Plasma-Lyle [®] A	Modally, acute meal injury, hespital LOS, CU LOS, mochanical vanilation time, aroum creatinine, aroum chiotica, unite culput, berofusion volume
Yanco of al ^{20,00}	2011, 2012	001	Acstralia	Adult ICU petients	1983	Chicroide-rich fluids (2-9% sealine, 4% succinylated galatin solution, 4% albumin) wercus balanced solutions (Fartmannh, Plasena-Lyteff hall, chicroide-poor 20% albumin)	Mortality, acute moral injury, hospital LOS, CU LOS, autom chichida, serum creatinine, urine culput
Zunini et al. ⁵⁶	2011	Retrapactive	Unguny	Children undergoing characterial surgery	122	0.9% salno social Ringer's laciato	Hyperchicreantia/metabolic acticatia

Hyperchloraemic acidosis

	Hyperchloraemia/	metabolic acidosis			
Reference	High-chloride	Low-chloride	Weight (%)	Risk ratio	Risk ratio
RCTs					
O'Malley et al.50	8 of 26	0 of 25	2.4	16.37 (0.99, 269.44)	
Subtotal	8 of 26	0 of 25	2.4	16·37 (0·99, 269·44)	
Heterogeneity: not	applicable				
Test for overall effe	ct: $Z = 1.96, P = 0.0$	05			
Observational/retrosp	ective studies				
Berger et al.41	13 of 20	2 of 20	9.3	6.50 (1.68, 25.16)	
Zunini et al.56	43 of 54	18 of 48	88.4	2.12 (1.44, 3.13)	
Subtotal	56 of 74	20 of 68	97.6	2.54 (1.73, 3.72)	
Heterogeneity: χ ² =	= 2·66, 1 d.f., <i>P</i> = 0·	10; <i>I</i> ² = 62%			
Test for overall effe	ect: $Z = 4.78, P < 0.25$	001			
Total	64 of 100	20 of 93	100.0	2.87 (1.95, 4.21)	•
Heterogeneity: $\chi^2 = 5$.	17, 2 d.f., <i>P</i> = 0·08; <i>I</i>	^{/2} = 61%			
Test for overall effect:					
Test for subgroup diffe	rences: $\chi^2 = 1.67, 1$	d.f., $P = 0.20; I^2 = 4$	40·1%		0.001 0.1 1 10 1000
5 1	, , , , , , , , , , , , , , , , , , ,				Favours high chloride Favours low chloride

Blood transfusion requirement

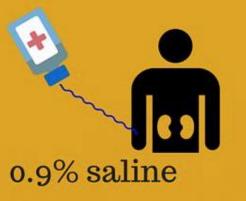
Acute Kidney Injury


	AKI/rena	al failure							
Reference	High-chloride	Low-chloride	Weight (%)	Risk ratio			Risk ratio		
RCTs									
Hadimioglu et al.12	3 of 30	3 of 60	2.4	2.00 (0.43, 9.32)					
O'Malley et al.50	2 of 26	1 of 25	1.2	1.92 (0.19, 19.90)					
Waters et al.14	5 of 33	4 of 33	4.8	1.25 (0.37, 4.25)				_	
Wu et al. ⁵³	2 of 21	1 of 19	1.3	1.81 (0.18, 18.39)					
Young et al.54	6 of 24	3 of 22	3.7	1.83 (0.52, 6.46)					
Subtotal	18 of 134	12 of 159	13.4	1.66 (0.83, 3.31)					
Heterogeneity: $\chi^2 = 0.31$	l, 4 d.f., <i>P</i> = 0·9	9; $I^2 = 0\%$							
Test for overall effect: Z =	= 1.44, P = 0.13	5							
CCTs									
Yunos et al. ^{26,55}	105 of 760	65 of 773	77.0	1.64 (1.23, 2.20)					
Subtotal	105 of 760	65 of 773	77.0	1.64 (1.23, 2.20)			\bullet		
Heterogeneity: not appli	cable								
Test for overall effect: Z =	= 3·33, <i>P</i> < 0·0	01							
Observational/retrospective	studies								
Berger et al.41	1 of 20	0 of 20	0.6	3.00 (0.13, 69.52)					
Shaw et al.27	23 of 2778	5 of 926	9.0	1.53 (0.58, 4.02)				_	
Subtotal	24 of 2798	5 of 946	9.6	1.63 (0.65, 4.07)				•	
Heterogeneity: $\chi^2 = 0.16$	6, 1 d.f., <i>P</i> = 0·6	9; <i>I</i> ² = 0%							
Test for overall effect: Z =	= 1.04, P = 0.3	D							
Total	147 of 3692	82 of 1878	100.0	1.64 (1.27, 2.13)			•		
Heterogeneity: $\chi^2 = 0.47, 7$	d.f., <i>P</i> = 1.00; <i>f</i>	² = 0%							
Test for overall effect: $Z = 3$	·76, <i>P</i> < 0·001				0.01	0.1	1	10	100
Test for subgroup difference	es: $\chi^2 = 0.00, 2$	d.f., $P = 1.00; I^2 =$	0%				oride Favo		

Mortality

	Mor	tality							
Reference	High-chloride	Low-chloride	Weight (%)	Risk ratio			Risk ratio		
RCTs									
Mahajan <i>et al</i> . ⁴⁷	1 of 11	0 of 11	0.3	3.00 (0.14, 66.53)					
Waters et al.14	1 of 33	1 of 33	0.7	1.00 (0.07, 15.33)					
Young et al.54	8 of 33	7 of 32	4.6	1.11 (0.45, 2.70)				-	
Subtotal	10 of 77	8 of 76	5.6	1.21 (0.53, 2.72)					
Heterogeneity: $\chi^2 =$	0.38, 2 d.f., P = 0.	·82; <i>I</i> ² = 0%							
Test for overall effect	ct: $Z = 0.45, P = 0.45$	65							
CCTs									
Yunos et al.26,55	112 of 760	102 of 773	66.0	1.12 (0.87, 1.43)					
Subtotal	112 of 760	102 of 773	66.0	1.12 (0.87, 1.43)			•		
Heterogeneity: not	applicable								
Test for overall effect	ct: $Z = 0.87, P = 0.3$	38							
Observational/retrospe	ective studies								
Berger et al.41	4 of 20	3 of 20	2.0	1.33 (0.34, 5.21)					
Shaw et al.27	93 of 2778	27 of 926	26.4	1.15 (0.75, 1.75)					
Subtotal	97 of 2798	30 of 946	28.4	1.16 (0.78, 1.74)			•		
Heterogeneity: $\chi^2 =$	0.04, 1 d.f., P = 0.04	$\cdot 84; I^2 = 0\%$					-		
Test for overall effect	ct: $Z = 0.72, P = 0.4$	47							
Total	219 of 3635	140 of 1795	100.0	1.13 (0.92, 1.39)			•		
Heterogeneity: $\chi^2 = 0.4$	46, 5 d.f., <i>P</i> = 0·99;	$I^2 = 0\%$				1		I	1
Fest for overall effect: 2	Z = 1.20, P = 0.23				0.05	0.2	1	5	20
fest for subgroup diffe	rences: $\chi^2 = 0.05$, 2	2 d.f., <i>P</i> = 0.98; <i>I</i> ²	= 0%				loride Favou	urs low chic	

Online First >



Effect of a Buffered Crystalloid Solution vs Saline on Acute Kidney Injury Among Patients in the Intensive Care Unit

The SPLIT Randomized Clinical Trial FREE ONLINE FIRST

Paul Young, FCICM^{1,2}; Michael Bailey, PhD³; Richard Beasley, DSc¹; Seton Henderson, FCICM^{1,4}; Diane Mackle, MN¹; Colin McArthur, FCICM^{1,3,5}; Shay McGuinness, FANZCA^{1,3,6}; Jan Mehrtens, RN⁴; John Myburgh, PhD^{7,8}; Alex Psirides, FCICM²; Sumeet Reddy, MBChB¹; Rinaldo Bellomo, FCICM^{3,9}; for the SPLIT Investigators and the ANZICS CTG

The 0.9% Saline vs Plasma-Lyte 148 (PL-148) for ICU fluid Therapy (SPLIT) trial was a prospective, investigator-initiated, multicenter, blinded, cluster-randomized, double-crossover study conducted in 4 tertiary ICUs in New Zealand.¹¹ Three study ICUs were adult or mixed (adult and pediatric) general medical and surgical ICUs and 1 ICU had a predominance of cardiothoracic and vascular surgical patients (eMethods in Supplement 2).

n=1110

1.47 ICU days, 7.33 hospital days

95 (8.6%) hospital death

Young JAMA doi: 10.1001/jama.2015.12334

2278 ICU pts requiring crystalloid Exclusions: RRT at screening or expected to need in 6hr; admission solely for organ harvest Plasmalyte

n=1152

1.5 ICU days, 7.45 hospital days

87 (7.6%) hosp death

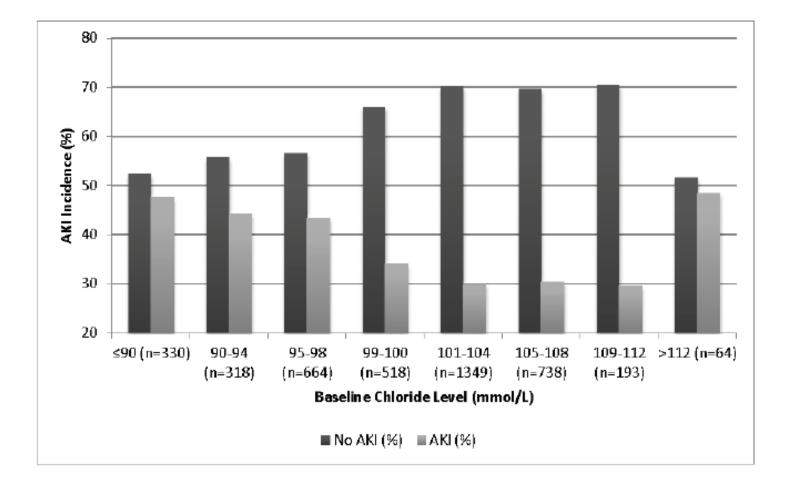
	No./Total No. (%)		Absolute Difference	Relative Risk		
Variable	Buffered Crystalloid	Saline	(95% CI)	(95% CI)	P Value	
Primary Outcome						
Acute kidney injury or failure ^a	102/1067 (9.6)	94/1025 (9.2)	0.4 (-2.1 to 2.9)	1.04 (0.80 to 1.36)	.77	
Secondary Outcomes (Renal Outcomes)						
RIFLE ^b						
Risk	123/1067 (11.5)	107/1025 (10.4)	1.1 (-1.6 to 3.8)	1.10 (0.86 to 1.41)	.44	
Injury	46/1067 (4.3)	57/1025 (5.6)	-1.2 (-3.1 to 0.6)	0.78 (0.53 to 1.13)	.19	
Failure	54/1067 (5.1)	36/1025 (3.5)	1.5 (-0.2 to 3.3)	1.44 (0.95 to 2.18)	.09	
Loss	2/1067 (0.2)	1/1025 (0.1)	0	1.92 (0.17 to 21.16)	>.99	
End-stage renal failure	0/1067 (0)	0/1025 (0)				
KDIGO stage ^c						
1	194/1067 (18.2)	194/1025 (18.9)	-0.7 (-4.1 to 2.6)	0.96 (0.80 to 1.15)	.69	
2	43/1067 (4.0)	46/1025 (4.5)	-0.5 (-2.2 to 1.3)	0.90 (0.60 to 1.4)	.67	
3	62/1067 (5.8)	58/1025 (5.7)	0.2 (-1.8 to 2.1)	1.03 (0.73 to 1.45)	.93	
RRT use and indications for RRT initiation						
RRT use	38/1152 (3.3)	38/1110 (3.4)	-0.1 (-1.6 to 1.4)	0.96 (0.62 to 1.50)	.91	
Oliguria	10/1152 (0.9)	11/1110 (1.0)	-0.1 (-0.9 to 0.7)	0.88 (0.37 to 2.05)	.83	
Hyperkalemia with serum potassium >6.5 mEq/L	4/1152 (0.3)	2/1110 (0.2)	0.2 (-0.3 to 0.6)	1.93 (0.35 to 10.50)	.69	
Acidemia with pH <7.20	13/1152 (1.1)	9/1110 (0.8)	0.3 (-0.5 to 1.1)	1.39 (0.60 to 3.24)	.52	
Serum urea nitrogen >70 mg/dL	5/1152 (0.4)	10/1110 (0.9)	-0.5 (-1.1 to 0.2)	0.48 (0.17 to 1.41)	.20	
Serum creatinine >3.39 mg/dL	16/1152 (1.4)	13/1110 (1.2)	0.2 (-0.7 to 1.1)	1.19 (0.57 to 2.45)	.71	
Organ edema	6/1152 (0.5)	11/1110 (1.0)	-0.5 (-1.2 to 0.2)	0.53 (0.20 to 1.42)	.23	
Other renal failure-related indication	3/1152 (0.3)	9/1110 (0.8)	-0.6 (-1.2 to 0.1)	0.32 (0.09 to 1.18)	.09	
Other non-renal failure-related indication	0/1152 (0)	2/1110 (0.2)	-0.2 (-0.4 to 0.1)		.24	
Ongoing use after hospital discharge	0/1152 (0)	0/1110 (0)				
∆ Creatinine, mean (95% CI), mg/dL ^d	0.21 (0.16 to 0.25)	0.18 (0.13 to 0.23)	0.03 (-0.04 to 0.10) ^e		.42	
Service utilization, geometric mean (95% CI)						
ICU, d	1.50 (1.41 to 1.60)	1.47 (1.39 to 1.57)	1.02 (0.94 to 1.11) ^t		.58	
Hospital, d	7.45 (7.05 to 7.87)	7.33 (6.94 to 7.76)	1.01 (0.94 to 1.10) ^t		.72	
Mechanical ventilation, h	15.32 (13.83 to 16.97)	14.24 (12.82 to 15.82)	1.05 (0.91 to 1.21) ^f		.48	
Use of mechanical ventilation	790/1152 (68.6)	751/1110 (67.7)	0.9 (-2.9 to 4.8)	1.01 (0.96 to 1.07)	.65	
ICU readmission required during index hospital admission	80/1152 (6.9)	57/1110 (5.1)	1.8 (-0.2 to 3.8)	1.35 (0.97 to 1.88)	.08	
Mortality						
Death in ICU	76/1152 (6.6)	80/1110 (7.2)	-0.6 (-2.7 to 1.5)	0.92 (0.68 to 1.24)	.62	
Death in hospital	87/1152 (7.6)	95/1110 (8.6)	-1.0 (-3.3 to 1.2)	0.88 (0.67 to 1.17)	.40	

eTable 2. Intravenous fluids and blood products administered in the 24 hours prior to enrollment

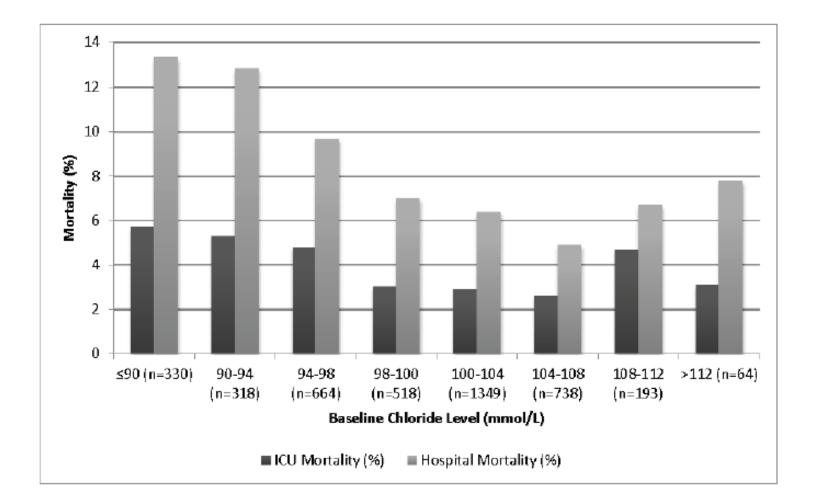
	Volume of fluid administered (mL) and proportion of patients receiving fluid– mean ± SD; median [IQR]; no. (%)				
T-1					
Fluid	Buffered crystalloid group	Saline group			
Plasma-Lyte 148 ®	1748 ± 1964; 1200 [0-3000]; 726 (63)	1649 ± 1841;1000 [0-3000]; 675 (61)			
0.9% saline	$551 \pm 1157; 0 [0-875];$	$549 \pm 1098; 0 [0-1000];$			
	343 (30)	351 (32)			
5% dextrose	47 ± 212; 0 [0-0]; 141 (12)	$42 \pm 196; 0 \ [0-0]; 124 \ (11)$			
Pediatric maintenance fluids ^a	$0.1 \pm 4; 0 [0-0]; 1 (0)$	0.3 ± 7; 0 [0-0]; 2 (0)			
Other crystalloids	385 ± 1155; 0 [0-0]; 181 (16)	361 ± 1081; 0 [0-0]; 189 (18)			
4% albumin	41 ± 253; 0 [0-0]; 40 (3)	34 ± 254; 0 [0-0]; 31 (3)			
20% albumin	$20 \pm 62; 0 [0-0]; 115 (10)$	$20 \pm 83; 0 [0-0]; 98 (9)$			
Gelofusine ®	13 ±137; 0 [0-0]; 17 (1)	7 ± 68; 0 [0-0]; 15 (1)			
Voluven or Volulyte ®	$1.7 \pm 29; 0[0-0]; 4(0)$	$1.6 \pm 34; 0 [0-0]; 3 (0)$			
Other colloids	$0.3 \pm 11; 0 [0-0]; 1 (0)$	$1.6 \pm 53; 0 [0-0]; 1 (0)$			
Blood product					
Packed red cells	149 ± 703; 0 [0-0]; 165 (14)	122 ± 479; 0 [0-0]; 158 (14)			
Fresh frozen plasma	91 ± 557; 0 [0-0]; 104 (9)	77 ± 355; 0 [0-0]; 93 (8)			
Platelets	51 ± 224; 0 [0-0]; 103 (9)	43 ± 179; 0 [0-0]; 88 (8)			
Cryoprecipitate	20 ± 132; 0 [0-0]; 66 (6)	17 ± 81; 0 [0-0]; 63 (6)			

RESEARCH ARTICLE

Dyschloremia Is a Risk Factor for the Development of Acute Kidney Injury in Critically III Patients


Min Shao^{1,2,3}, Guangxi Li^{2,4}, Kumar Sarvottam^{1,2}, Shengyu Wang^{2,5}, Charat Thongprayoon², Yue Dong², Ognjen Gajic^{2,6}, Kianoush Kashani^{1,2,6}*

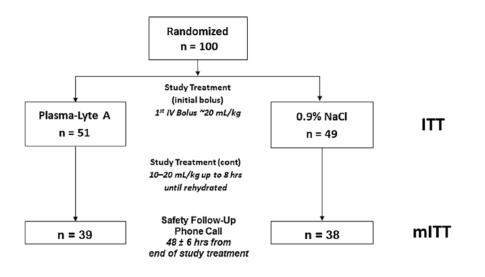
1 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States of America, 2 Multidisciplinary Epidemiology and Translational Research in Intensive Care (METRIC) Research Group, Mayo Clinic, Rochester, MN, United States of America, 3 Department of Critical Care Medicine, Anhui Provincial hospital Affiliated to Anhui Medical University, Hefei, Anhui, China, 4 Department of Pulmonary Medicine, Guang'Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China, 5 Department of Pulmonary Medicine, The First Affiliated Hospital of Xi'an Medical University, Shaanxi, China, 6 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, United States of America


PLOS ONE | DOI:10.1371/journal.pone.0160322 August 4, 2016

Chloride and AKI incidence

Chloride and mortality

RESEARCH ARTICLE



BMC Pediatrics

A randomized trial of Plasma-Lyte A and 0.9 % sodium chloride in acute pediatric gastroenteritis

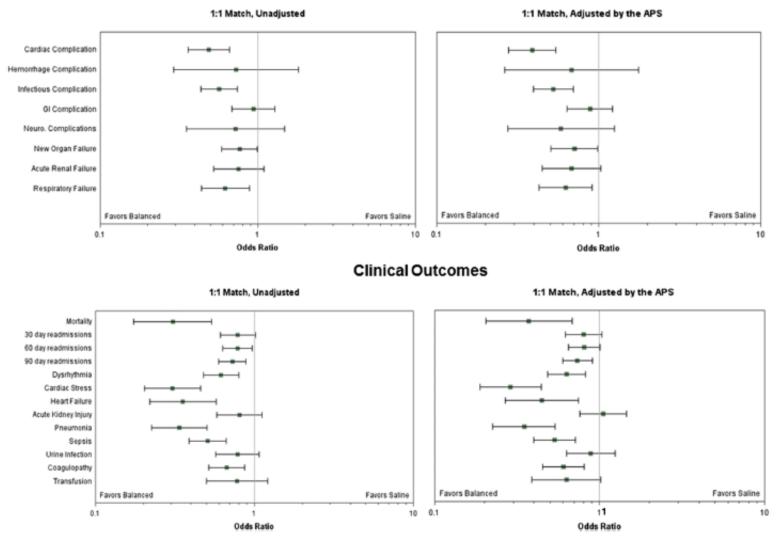
Coburn H. Allen^{1*}, Ran D. Goldman², Seema Bhatt³, Harold K. Simon⁴, Marc H. Gorelick⁵, Philip R. Spandorfer⁶, David M. Spiro⁷, Sharon E. Mace⁸, David W. Johnson⁹, Eric A. Higginbotham¹, Hongyan Du¹⁰, Brendan J. Smyth¹¹, Carol R. Schermer¹⁰ and Stuart L. Goldstein³

	Plasma-Lyte A	0.9 % NaCl	P value
	n = 39	n=38	
Bicarbonate <23 mEq/L			
Baseline (hour 0)	16.9 ± 3.51	17.8 ± 2.82	.004
Hour 4	18.5 ± 3.74	18.0 ± 3.67	
Bicarbonate <12 mEq/L			
Baseline (hour 0) (n)	9.3 ± 0.58 (3)	- (0)	NA ^b
Hour 4 (n)	14.3 ± 4.16 (3)	- (0)	
Bicarbonate ≥12–16 mEq/L			
Baseline (hour 0) (n)	14.5 ± 1.34 (13)	14.6 ± 1.29 (13)	.04
Hour 4 (n)	16.1 ± 2.28 (12)	14.7 ± 2.90 (11)	
Bicarbonate >16–22 mEq/L			
Baseline (hour 0) (n)	19.23 ± 1.86 (23)	19.51 ± 1.68 (25)	.11
Hour 4 (n)	20.35 ± 3.18 (22)	19.53 ± 2.95 (24)	
Chloride, mmol/L			
Baseline	103.03 ± 4.74	103.53 ± 4.19	<0.001
Hour 4	104.49 ± 3.18	108.51 ± 4.87	
Gorelick dehydration scale			
Baseline (hour 0)	5.2 ± 0.93	5.3 ± 1.11	.03
Hour 2	2.0 ± 1.45	2.8 ± 1.74	
Hour 4	0.81 ± 0.84	1.41 ± 1.08	.08
FLACC pain scale			
Baseline (Hour 0)	2.0 ± 1.91	1.7 ± 2.00	.03
Hour 2	0.6 ± 0.98	1.7 ± 2.59	

Table 2 Primary and secondary outcomes (mITT population)

Shaw et al. Critical Care (2015) 19:334 DOI 10.1186/s13054-015-1045-z

RESEARCH



Open Access

Impact of intravenous fluid composition on outcomes in patients with systemic inflammatory response syndrome

Andrew D. Shaw^{1*}, Carol R. Schermer², Dileep N. Lobo³, Sibyl H. Munson⁴, Victor Khangulov⁴, David K Hayashida⁴ and John A. Kellum⁵

Methods: This was a propensity-matched cohort study in hospitalized patients receiving at least 500 mL IV crystalloid within 48 hours of SIRS. Patient data was extracted from a large multi-hospital electronic health record database between January 1, 2009, and March 31, 2013. The primary outcome was in-hospital mortality. Secondary outcomes included length of stay, readmission, and complications measured by ICD-9 coding and clinical definitions. Outcomes were adjusted for illness severity using the Acute Physiology Score. Of the 91,069 patients meeting inclusion criteria, 89,363 (98 %) received 0.9 % saline whereas 1706 (2 %) received a calcium-free balanced solution as the primary fluid.

Administrative Outcomes

Fig. 2 Administrative and clinical outcomes unadjusted and adjusted for Acute Physiology Score

Van Regenmortel et al. Ann. Intensive Care (2016) 6:91 DOI 10.1186/s13613-016-0193-x

RESEARCH

CrossMark

Open Access

Impact of chloride and strong ion difference on ICU and hospital mortality in a mixed intensive care population

Niels Van Regenmortel^{1,2*}, Walter Verbrugghe¹, Tim Van den Wyngaert^{3,4} and Philippe G. Jorens^{1,4}

Methods: Retrospective cohort study in an academic tertiary intensive care unit on 8830 adult patients who stayed at least 24 h in the ICU was carried out. Patients admitted after elective cardiac surgery were treated as a separate subgroup (*n* = 2350). Analyses were performed using multivariable logistic regression. All statistical models were extensively adjusted for confounders, including comorbidity, admission diagnosis, other electrolytes and acid–base parameters.

Results: Severe hyperchloremia (>110 mmol/L), but not low (SID) was significantly associated with increased mortality in the ICU (odds ratio vs. normochloremia 1.81; 95 % CI 1.32–2.50; p < 0.001) and the hospital (odds ratio 1.49; 95 % CI 1.14–1.96; p = 0.003). Hyperchloremia and low (SID) were encountered in the majority of patients admitted after cardiac surgery (in 86.9 and 47.2 %, respectively), but were not negatively associated with mortality.

30-Day mortality

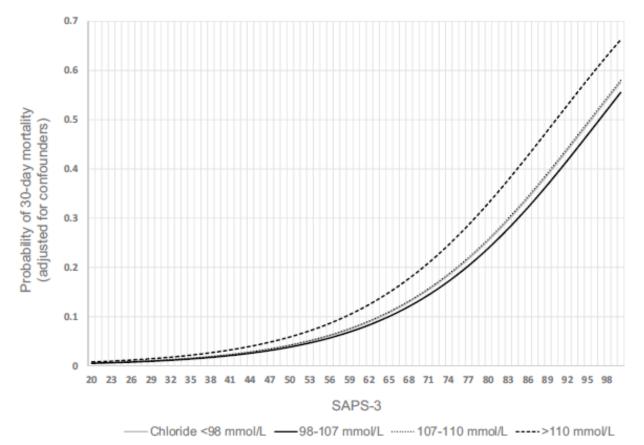


Fig. 1 Probability of 30-day mortality per chloride category based on the logistic regression model in Table 2. Simulation using a lactate level of 2 mEq/L, an admission diagnosis associated with a high risk of death (e.g., sepsis; Additional file 2: Table S2), no comorbidities and a normal sodium level

Chloride Content of Fluids Used for Large-Volume Resuscitation Is Associated With Reduced Survival

Ayan Sen, MD, MS, FCCP; Christopher M. Keener, MS; Florentina E. Sileanu, MS; Emily Foldes, MS; Gilles Clermont, MD, CM, MS; Raghavan Murugan, MD, MS, FRCP, FCCM; John A. Kellum, MD, MCCM

Objective: We sought to investigate if the chloride content of fluids used in resuscitation was associated with short- and long-term outcomes.

Design: We identified patients who received large-volume fluid resuscitation, defined as greater than 60mL/kg over a 24-hour period. Chloride load was determined for each patient based on the chloride ion concentration of the fluids they received during large-volume fluid resuscitation multiplied by the volume of fluids. We compared the development of hyperchloremic acidosis, acute kidney injury, and survival among those with higher and lower chloride loads.

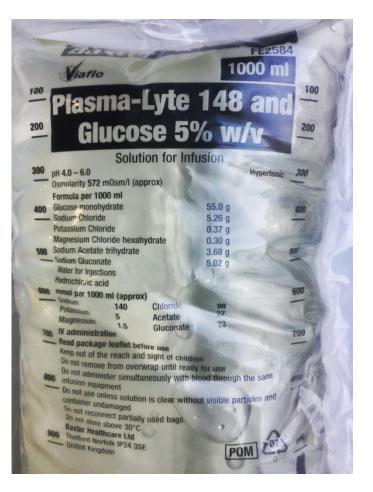
Setting: University Medical Center.

Patients: Patients admitted to ICUs from 2000 to 2008. **Interventions:** None.

Measurements and Main Results: Among 4,710 patients receiving large-volume fluid resuscitation, hyperchloremic acidosis was documented in 523 (11%). Crude rates of hyperchloremic acidosis, acute kidney injury, and hospital mortality all increased significantly as chloride load increased (p < 0.001). However, chloride load was no longer associated with hyperchloremic acidosis or acute kidney injury after controlling for total fluids, age, and baseline severity. Conversely, each 100 mEq increase in chloride load was associated with a 5.5% increase in the hazard of death even after controlling for total fluid volume, age, and severity (p = 0.0015) over 1 year.

Conclusions: Chloride load is associated with significant adverse effects on survival out to 1 year even after controlling for total fluid load, age, and baseline severity of illness. However, the relationship between chloride load and development of hyperchloremic acidosis or acute kidney injury is less clear, and further research is needed to elucidate the mechanisms underlying the adverse effects of chloride load on survival. (*Crit Care Med* 2016; XX:00–00)

Key Words: acute kidney injury; chloride; metabolic acidosis; saline; survival


TABLE 2. Outcomes Stratified by Chloride Load

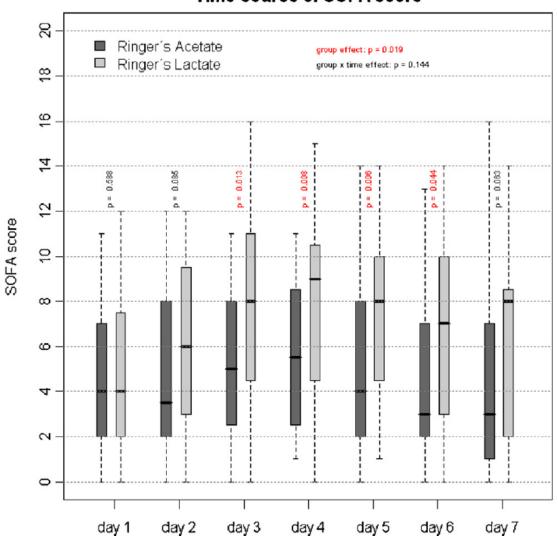
Quartile	Q1	Q2	Q3	Q4	
mEq	(323–491)	(492–635)	(636–848)	(849-5,432)	P
Hyperchloremic acidosis within 24 hr of large- volume fluid resuscitation, <i>n</i> (%)					
Missing	758 (64.4)	748 (63.5)	737 (62.6)	651 (55.3)	< 0.001
No	335 (28.5)	341 (28.9)	321 (27.2)	296 (25.1)	
Yes	84 (7.1)	89 (7.6)	120 (10.2)	230 (19.5)	
Maximum Kidney Disease: Improving Global Outcomes, <i>n</i> (%)					
No acute kidney injury	329 (27.9)	245 (20.8)	226 (19.2)	163 (13.9)	< 0.001
Stage 1	221 (18.8)	211 (17.9)	165 (14.0)	151 (12.8)	
Stage 2	371 (31.5)	421 (35.7)	433 (36.8)	362 (30.8)	
Stage 3	256 (21.7)	301 (25.5)	354 (30.1)	499 (42.5)	
Hospital mortality, <i>n</i> (%)	226 (19.2)	285 (24.2)	298 (25.3)	417 (35.4)	< 0.001
Mortality after ICU admission, days, n (%)					
30	207 (17.6)	266 (22.6)	289 (24.5)	387 (32.9)	< 0.001
90	294 (24.9)	343 (29.1)	374 (31.7)	480 (40.8)	< 0.001
365	407 (34.6)	432 (36.7)	481 (40.8)	553 (46.9)	< 0.001

Q1-Q4 = quartiles 1 through 4.

Lactate Vs Acetate

Lactate Vs Acetate

Safety of resuscitation with Ringer's acetate solution in severe burn (VolTRAB)—An observational trial


Jochen Gille^{a,*}, Birgit Klezcewski^a, Michael Malcharek^a, Thomas Raff^b, Martin Mogk^c, Armin Sablotzki^a, Hischam Taha^d

^aDepartment of Anaesthesiology, Intensive Care Medicine and Pain Therapy, St. Georg Hospital GmbH Leipzig, Germany

^b Department of Plastic and Handsurgery, St. Georg Hospital GmbH Leipzig, Germany

^c MoReData GmbH, Kerkrader Str. 11, 35394 Gießen, Germany

^d Department of Plastic & Reconstructive Surgery, Royal Devon & Exeter Hospital Foundation Trust, Exeter, Devon, UK

Time-course of SOFA score

Fig. 1 – Variation of SOFA score during the first 7 days of admission.

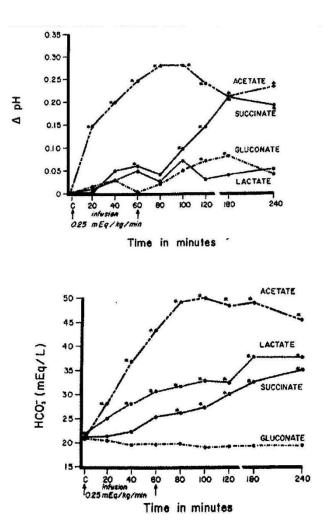
The effects of plasmalyte-148 *vs.* Hartmann's solution during major liver resection: a multicentre, double-blind, randomized controlled trial

L. WEINBERG ^{1, 2, 3}, B. PEARCE ¹, R. SULLIVAN ⁴, L. SIU ⁵, N. SCURRAH ¹ C. TAN ¹, M. BACKSTROM ⁵, M. NIKFARJAM ², L. McNICOL ¹ D. STORY ², C. CHRISTOPHI ², R. BELLOMO ⁶

(Minerva Anestesiol 2015;81:1288-97)

	Hartmann's	Plasmalyte	Plasma
Sodium, meq/L	129	140	140
Chloride, meq/L	109	98	104
Potassium, meq/L	5	5	4
Calcium, meq/L	2	0	2
Magnesium, meq/L	0	3	1
Acetate, meq/L	0	27	0
Gluconate meq/L	0	23	0
Lactate, meq/L	29	0	1
pН	6.5	7.4	7.4
eSID, meq/L	29	49	42
Osmolality (approximate) mOsm/L-	274	295	290-310

TABLE I.—Physiochemical profiles of Plasmalyte-148 and Hartmann's solution compared to plasma. Values are an approximation, and stated exactly as printed on each litre of the solution.


	Immediately postoperative		
	Plasmalyte N.=30	Hartmann's N.=30	Р
SBE; mmol/L (N.=-2 to 2)	-0.9 (2.3)	-1.7 (2.2)	0.17
Lactate; mmol/L (N.=0.5-1.6)	1.9 (1.13)	2.9 (1.76)	0.02
pH (N.=7.35-7.45)	7.34 (0.05)	7.33 (0.05)	0.44
Na+; mmol/L (N.=136-145)	139 (2.2)	138 (2.9)	0.09
Cl-; mmol/L (N.=98-107)	106 (2.4)	108 (3.0)	0.01
K+; mmol/L (N.=3.5-5.1)	4.1 (0.61)	4.4 (0.56)	0.19
Mg ²⁺ ; mmol/L (N.=0.66-1.07)	0.85 (0.12)	0.71 (0.11)	< 0.001
Phosphate; mmol/L (N.=0.87-1.45)	1.2 (0.19)	1.4 (0.15)	0.32
Ca ²⁺ ; mmol/L (N.=2.15-2.55)	1.97 (0.37)	1.98 (0.50)	0.93
Ca ²⁺ (ionized); mmol/L (N.=1.13-1.32)	1.07 (0.06)	1.14 (0.06)	< 0.001
eSID; meq/L (N.=40-42)	37.2 (3.39)	33.5 (5.34)	0.002
Na+Cl- difference; mmol·L-1 (N.=38)	32 (3.1)	29 (4.3)	0.004
Albumin; g/L (N.=35-52)	30 (5.5)	28 (7.2)	0.15
ALT; IU (N.<33)	251 (180.1)	347 (421.0)	0.26
Bilirubin; mmol/L (N.<18)	19.6 (10.6)	23 (12.6)	0.26
Creatinine; mmol/L (N.=44-80)	76 (23.4)	85 (18.6)	0.10
GFR; mL/min (N.=90-120)	78 (13.9)	76 (14.8)	0.75
Glucose mmol/L (N.=3.9-5.8)	8.0 (1.7)	8.3 (2.0)	0.53
Hb; g/dL (N.=115-165 for females; 130-170	119 (12.5)	102 (40.2)	0.031
Platelets; x109 (N.=150-400)	217 (71.4)	185 (78.3)	0.20
PT; s (N.=11-14)	12.0 (2.6)	14.4 (2.41)	<0.001
APTT; s (N.=22-38)	26 (2.8)	30 (7.2)	0.007
Fibrinogen; g/L (N.=2.0-4.0)	4.3 (5.3)	3.3 (1.2)	0.34

	Plasmalyte N.=30	Hartmann's N.=30	Р
No of patients with a complication	6 (20%)	17 (56%)	0.007
Total number of complications	10	30	
Clavien-Dindo Grade of highest complication		_	
i	0	2 (7%)	0.49
ii	2 (7%)	7 (23%)	0.14
iii	2 (7%)	2 (7%)	1.0
iv	1 (3%)	4 (13%)	0.35
v	1 (3%)	2 (7%)	1.0
Cardio-respiratory complications			
Pneumonia	0	2 (7%)	
Pulmonary congestion	1 (3%)	4 (13%)	
Pulmonary edema	1 (3%)	1 (3%)	
Pleural effusion	0	1 (3%)	
Pneumothorax	1 (3%)	0	
Myocardial infarction	0	4 (13%)	
Arrhythmias	2 (7%)	3 (10%)	
Renal complications			
Acute renal failure	0	1 (3%)	
Surgical complications			
Wound infection	1 (3%)	1 (3%)	
Postoperative ileus delaying discharge	0	3 (10%)	
Bile leak	1 (3%)	2 (7%)	
Intra-abdominal sepsis requiring re-laparotomy	1 (3%)	2 (3%)	
Liver failure with encephalopathy	1 (3%)	0	
Other			
Postoperative blood transfusion	1 (3%)	5 (17%)	
Patient Outcomes			
Length of hospital stay days (median)	5.9	7.8	0.04
Hospital death within 30 days of surgery	0	2 (7%)	0.49

TABLE V.—Postoperative complications and outcomes.

Potential advantages of acetate

- Converted to bicarbonate in liver and extra-hepatic tissue
- More rapidly converted than lactate
- More alkalinizing ability than lactate

Kirkendol. Trans Am Soc Artif Intern Organs 1980;26:323-237

'It takes 50 years to get a wrong idea out of medicine, and 100 years to get a right one into medicine'

John Hughlings Jackson (1835-1911)

Any questions?

